22/08(a)

The University of Sydney

CHEMISTRY 1B - CHEM1102

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2008

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Page 24 is for rough working only.

OFFICIAL USE ONLY

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
10	5			
11	7			
12	8			
13	5			
14	3			
15	3			
16	2			
17	4			
18	5			
19	8			
20	5			
21	5			
22	5			
23	5			
Total	70			

• Briefly explain how the concept of electronegativity can rationalise the existence of acidic, basic and amphoteric oxides.	Marks 3
Draw the face-centred cubic unit cell.	2

	A solution is prepared that is 0.10 M in chromate. A concentrated aqueous solu What is the concentration of $Ag^+(aq)$ ion K_{sp} of $AgBr = 5.0 \times 10^{-13}$	potassium bromide and 0.10 M in potassium tion of silver nitrate is added with stirring. ns when silver bromide first appears?	Marks 4
			_
		Answer:	_
	What is the concentration of $Ag^+(aq)$ ion K_{sp} of $Ag_2CrO_4 = 2.6 \times 10^{-12}$	ns when silver chromate first appears?	
			_
	What is the encoder time of $\mathbf{D}_{-}(\mathbf{r}_{0})$ is	Answer:	
	what is the concentration of Br (aq) ion	s when silver chromate first appears?	
		Answer:	
•	Calculate the equilibrium constant for the	ne following reaction.	3
	$AgI(s) + 2CN^{-}(aq)$	$\blacksquare [Ag(CN)_2]^{-}(aq) + I^{-}(aq)$	
	Data: K_{stab} of $[\text{Ag}(\text{CN})_2]^- = 3 \times 10^{20}$;	$K_{\rm sp}$ of AgI = 8.3×10^{-17}	
		Answer:	

•	Which of the cations, $[Fe(OH_2)_6]^{3+}$ and $[Fe(OH_2)_6]^2$ explain why.	⁺ , has the larger pK_a ? Briefly	Marks 2
•	Consider the compound [CrCl(OH ₂) ₄ (NCS)]Cl·2H ₂ C).	3
	What is the oxidation state of the transition metal io	n?	
	What is the coordination number of the transition m	etal ion?	
	How many <i>d</i> -electrons in the transition metal ion?		
	List all the ligand donor atoms.		
•	Consider the complexes cis -[PtCl ₂ (NH ₃) ₂] and $trans$ structures of the two isomers, clearly illustrating the	r-[PtCl ₂ (NH ₃) ₂]. Draw the stereochemistry.	3
	Briefly suggest why <i>cis</i> -[PtCl ₂ (NH ₃) ₂] is an effectiv <i>trans</i> -[PtCl ₂ (NH ₃) ₂] is not.	e anti-cancer drug, but	

•	Buffers made of mixtures of $H_2PO_4^-$ and HPO_4^{2-} are used to control the pH of soft drinks. What is the pH of a 350 mL drink containing 6.0 g of NaH ₂ PO ₄ and 4.0 g of Na ₂ HPO ₄ ?	Marks 5
r	For phosphoric acid, H_3PO_4 , $pK_{a1} = 2.15$, $pK_{a2} = 7.20$ and $pK_{a3} = 12.38$.	_
	Briefly describe how this buffer system functions. Use equations where appropriate	-
	Brieffy describe now this burief system functions. Ose equations where appropriate.	_
	Is this buffer better able to resist changes in pH following the addition of acid or of base? Explain your answer.	

Addition of salt to water raises its boiling point and lowers its melting point. Sketch the phase diagram for water containing salt, showing how it relates to the phase diagram for water (shown as dotted lines below).

In terms of the relative entropies of all relevant species, explain why the boiling point of salt water is higher than that of pure water.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• The following data were obtained for the reaction between gaseous nitric oxide and chlorine at –10 °C:

	2NO(g) + C	$dl_2(g) \rightarrow 2NOCl($	(g)
Experiment Number	Initial P _{NO} (atm)	Initial P _{Cl2} (atm)	Initial Reaction Rate $(atm s^{-1})$
1	2.16	2.16	0.065
2	2.16	4.32	0.130
3	4.32	4.32	0.518

Derive an expression for the rate law for this reaction and calculate the value of the rate constant.

Rate law:

Rate constant:

THIS QUESTION CONTINUES ON THE NEXT PAGE

 The mechanism for this reaction has been postulated to be that below.	Marks
$2NO(g) \iff N_2O_2(g)$ fast	4
$N_2O_2(g) + Cl_2 \rightarrow 2NOCl(g)$ slow	
 Work out the rate law expected for this mechanism and hence show that it is consistent with the experimental rate law and the chemical equation.	
The reaction is exothermic. Draw the potential energy <i>vs</i> reaction coordinate diagram for this mechanism, labelling all species that can be isolated.	m

Marks • The structure of the antihistamine, ZyrtecTM, is given below. 5 OH Cl A В С What is the name of the functional group in Box A? What is the name of the functional group in Box B? What is the name of the functional group in Box C? By drawing an arrow on the structure above, clearly indicate the stereocentre in the structure of Zyrtec. Draw the product of the reaction when Zyrtec is treated with LiAlH₄ followed by dilute acid.

• Consider the compound J below.	Marks
	5
J	
What is the systematic name for compound J .	
Draw a constitutional isomer of J .	
Draw a configurational isomer of J .	
Draw the structure of the product formed when compound J is reacted with hydrogen gas (H ₂) and a palladium on carbon (Pd/C) catalyst.	

Marks • Complete the following mechanism by adding curly arrows to illustrate the bonding 5 changes that take place. $Cl = Cl = -AlCl_3$ Ð Η Cl Cl ⊖ OCH₃ Br Ð $\operatorname{Br}^{\ominus}$ + THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1102 - CHEMISTRY 1B

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\epsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Decimal fractions			Deci	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol	
10^{-3}	milli	m	10^{3}	kilo	k	
10^{-6}	micro	μ	10^{6}	mega	Μ	
10^{-9}	nano	n	10 ⁹	giga	G	
10^{-12}	pico	р	10^{12}	tera	Т	

CHEM1102 - CHEMISTRY 1B

Standard Reduction Potentials, E°

Reaction	E° / V
$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	+2.01
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Co}(s)$	-0.28
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$\text{Li}^+(\text{aq}) + e^- \rightarrow \text{Li}(s)$	-3.04

CHEM1102 - CHEMISTRY 1B

Useful formulas

Thermodynamics & Equilibrium	Electrochemistry								
$\Delta U = q + w = q - p\Delta V$	$\Delta G^{\circ} = -nFE^{\circ}$								
$\Lambda \cdot S = \Lambda S = \frac{\Delta_{sys}H}{M}$	Moles of $e^- = It/F$								
$\Delta_{\rm universe} J = \Delta_{\rm sys} J = \frac{1}{T_{\rm sys}}$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$								
$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	$= E^{\circ} - (RT/nF) \times \ln Q$								
$\Delta G = \Delta G^{\circ} + RT \ln Q$	$E^{\circ} = (RT/nF) \times 2.303 \log K$								
$\Delta G^{\circ} = -RT \ln K$	$= (RT/nF) \times \ln K$								
$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$								
Colligative properties	Quantum Chemistry								
$\pi = cRT$	$E = h u = h c / \lambda$								
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\lambda = h/mv$								
$\mathbf{p} = k\mathbf{c}$	$4.5k_{ m B}T = hc/\lambda$								
$\Delta T_{ m f} = K_{ m f} m$	$E = -Z^2 E_{\rm R}(1/n^2)$								
$\Delta T_{\rm b} = K_{\rm b} m$	$\Delta x \cdot \Delta(mv) \ge h/4\pi$								
	$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$								
A side and Desar	a .								
Acids and Bases	Gas Laws								
$pK_w = pH + pOH = 14.00$	Gas Laws $PV = nRT$								
$pK_{w} = pH + pOH = 14.00$ $pK_{w} = pK_{a} + pK_{b} = 14.00$	Gas Laws PV = nRT $(P + n^2 a/V^2)(V - nb) = nRT$								
Actos and Bases $pK_{w} = pH + pOH = 14.00$ $pK_{w} = pK_{a} + pK_{b} = 14.00$ $pH = pK_{a} + \log\{[A^{-}] / [HA]\}$	Gas Laws PV = nRT $(P + n^2 a/V^2)(V - nb) = nRT$								
Actos and Bases $pK_{w} = pH + pOH = 14.00$ $pK_{w} = pK_{a} + pK_{b} = 14.00$ $pH = pK_{a} + \log\{[A^{-}] / [HA]\}$ Radioactivity	Gas Laws PV = nRT $(P + n^2 a/V^2)(V - nb) = nRT$ Kinetics								
Actos and Bases $pK_{w} = pH + pOH = 14.00$ $pK_{w} = pK_{a} + pK_{b} = 14.00$ $pH = pK_{a} + \log\{[A^{-}] / [HA]\}$ Radioactivity $t_{V_{2}} = \ln 2/\lambda$	Gas Laws PV = nRT $(P + n^2 a/V^2)(V - nb) = nRT$ Kinetics $t_{1/2} = \ln 2/k$								
Actos and Bases $pK_{w} = pH + pOH = 14.00$ $pK_{w} = pK_{a} + pK_{b} = 14.00$ $pH = pK_{a} + \log\{[A^{-}] / [HA]\}$ Radioactivity $t_{1/2} = \ln 2/\lambda$ $A = \lambda N$	Gas Laws PV = nRT $(P + n^2 a/V^2)(V - nb) = nRT$ Kinetics $t_{1/2} = \ln 2/k$ $k = Ae^{-E_a/RT}$								
Actos and Bases $pK_{w} = pH + pOH = 14.00$ $pK_{w} = pK_{a} + pK_{b} = 14.00$ $pH = pK_{a} + \log\{[A^{-}] / [HA]\}$ Radioactivity $t_{1/2} = \ln 2/\lambda$ $A = \lambda N$ $\ln(N_{0}/N_{t}) = \lambda t$	Gas Laws PV = nRT $(P + n^2 a/V^2)(V - nb) = nRT$ Kinetics $t_{\frac{1}{2}} = \ln \frac{2}{k}$ $k = Ae^{-E_a/RT}$ $\ln[A] = \ln[A]_o - kt$								
Actos and Bases $pK_w = pH + pOH = 14.00$ $pK_w = pK_a + pK_b = 14.00$ $pH = pK_a + \log\{[A^-] / [HA]\}$ Radioactivity $t_{1/2} = \ln 2/\lambda$ $A = \lambda N$ $\ln(N_0/N_t) = \lambda t$ $^{14}C age = 8033 \ln(A_0/A_t)$	Gas Laws $PV = nRT$ $(P + n^{2}a/V^{2})(V - nb) = nRT$ Kinetics $t_{\frac{1}{2}} = \ln \frac{2}{k}$ $k = Ae^{-E_{a}/RT}$ $\ln[A] = \ln[A]_{o} - kt$ $\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)$								
Actos and Bases $pK_w = pH + pOH = 14.00$ $pK_w = pK_a + pK_b = 14.00$ $pH = pK_a + \log\{[A^-] / [HA]\}$ Radioactivity $t_{1/2} = \ln 2/\lambda$ $A = \lambda N$ $\ln(N_0/N_t) = \lambda t$ $^{14}C age = 8033 \ln(A_0/A_t)$ Miscellaneous	Gas Laws PV = nRT $(P + n^2 a/V^2)(V - nb) = nRT$ Kinetics $t_{\frac{1}{2}} = \ln 2/k$ $k = Ae^{-E_a/RT}$ $\ln[A] = \ln[A]_o - kt$ $\ln \frac{k_2}{k_1} = \frac{E_a}{R} (\frac{1}{T_1} - \frac{1}{T_2})$ Mathematics								
Actos and Bases $pK_w = pH + pOH = 14.00$ $pK_w = pK_a + pK_b = 14.00$ $pH = pK_a + \log\{[A^-] / [HA]\}$ Radioactivity $t_{1/2} = \ln 2/\lambda$ $A = \lambda N$ $\ln(N_0/N_t) = \lambda t$ $^{14}C age = 8033 \ln(A_0/A_t)$ Miscellaneous $A = -\log_{10} \frac{I}{I_0}$	Gas Laws PV = nRT $(P + n^2 a/V^2)(V - nb) = nRT$ Kinetics $t_{1/2} = \ln 2/k$ $k = Ae^{-E_a/RT}$ $\ln[A] = \ln[A]_o - kt$ $\ln \frac{k_2}{k_1} = \frac{E_a}{R} (\frac{1}{T_1} - \frac{1}{T_2})$ Mathematics If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$								
Actos and Bases $pK_{w} = pH + pOH = 14.00$ $pK_{w} = pK_{a} + pK_{b} = 14.00$ $pH = pK_{a} + \log\{[A^{-}] / [HA]\}$ Radioactivity $t_{1/2} = \ln 2/\lambda$ $A = \lambda N$ $\ln(N_{0}/N_{t}) = \lambda t$ $^{14}C age = 8033 \ln(A_{0}/A_{t})$ Miscellaneous $A = -\log_{10} \frac{I}{I_{0}}$ $A = \varepsilon cl$	Gas Laws $PV = nRT$ $(P + n^{2}a/V^{2})(V - nb) = nRT$ Kinetics $t_{1/2} = \ln 2/k$ $k = Ae^{-E_{a}/RT}$ $\ln[A] = \ln[A]_{o} - kt$ $\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)$ Mathematics If $ax^{2} + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $\ln x = 2.303 \log x$								

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 HYDROGEN																	2 HELUIM
Η																	He
1.008		I															4.003
3	4											5	6	7	8	9	10
Linnom	BERYLLIUM											BORON	CARBON	NIROGEN	OATGEN	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
SODIUM	MAGNESIUM											ALUMINIUM	SILICON	PHOSPHORUS D	SULFUR	CHLORINE	ARGON
1 Na 22.99	24.31											26.98	28.09	∎ 30.97	32.07	35.45	AL 39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
K		Sc	Ti	V	Cr	Mn	Fe		Ni	Cu	Zn	Ga	Ge	AS	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37 RUBIDIUM	38 strontium	39 yttrium	40 zirconium	41 NIOBIUM	42 MOLYBDENUM	43 TECHNETIUM	44 RUTHENIUM	45 RHODIUM	46 palladium	47 SILVER	48 cadmium	49	50 TIN	51 ANTIMONY	52 TELLURIUM	53 IODINE	54 XENON
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	BARIUM		HAFNIUM	TANTALUM To	TUNGSTEN			IRIDIUM	PLATINUM Dt		MERCURY	THALLIUM	LEAD Ph	BISMUTH Ri	POLONIUM	ASTATINE	RADON Rn
132.91	Da 137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103	104	105	106	107	108	109	110	111							
FRANCIUM	RADIUM		RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	DARMSTADTIUM	ROENTGENIUM							
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]							
	~~		0	50	(0	(1	()	(2)	C 4		- .		(7	<u>(</u> 0	(0)	70	71
LANTHANO	D LANTHA	NUM CER	ð IUM PRAS	ЭУ Eeodymium	OU NEODYMIUM	O I PROMETHIUM	O∠ samarium	03 EUROPIUM	04 GADOLINI	JM TERBI) (UM DYSE	DO ROSIUM H	O /	Oð erbium	09 THULIUM	/U ytterbium	/ 1 LUTETIUM

La

138.91

89

ACTINIUM

Ac

[227.0]

S

ACTINOIDS

Ce

140.12

90

THORIUM

Th

232.04

Pr

140.91

91

PROTACTINIUM

Pa

[231.0]

Nd

144.24

92

URANIUM

U

238.03

Pm

[144.9]

93

NEPTUNIUM

Np

[237.0]

Sm

150.4

94

PLUTONIUM

Pu

[239.1]

Eu

151.96

95

AMERICIUM

Am

[243.1]

Tb

158.93

97

BERKELLIUM

Bk

[247.1]

Dy

162.50

98

CALIFORNIUM

Cf

[252.1]

Ho

164.93

99

EINSTEINIUM

Es

[252.1]

Er

167.26

100

FERMIUM

Fm

[257.1]

Tm

168.93

101

MENDELEVIUM

Md

[256.1]

Yb

173.04

102

NOBELIUM

No

[259.1]

Lu

174.97

103

LAWRENCIUM

Lr

[260.1]

Gd

157.25

96

CURIUM

Cm

[247.1]

PERIODIC TABLE OF THE ELEMENTS